Сайт посвящен ламповой технике
и качественному звуку
На главную  
Статьи и схемы
Программы
Справочник
Обзоры
Книги
Библиотека
Пром.аппаратура
 
Портал для радиолюбителей



 

Особенности схемотехники блоков питания ламповых усилителей

Качественная работа ламповой аппаратуры высокой верности воспроизведения звука в значительной степени зависит от применяемого блока питания, который из сетевого напряжения формирует питающие напряжения, необходимые для функционирования отдельных элементов, каскадов и блоков лампового усилителя в пределах заданных параметров. При этом среди основных требований, предъявляемых к таким источникам, помимо формирования напряжений и токов необходимых величин, особое место занимает обеспечение соответствующей степени фильтрации питающих напряжений. Дело в том, что одной из основных причин появления фона в ламповых усилителей являются пульсации выпрямленного напряжения, питающего цепи анодов и экранных сеток ламп. Поэтому добиться уменьшения фона, возникающего из-за пульсаций напряжения, можно в первую очередь, усовершенствованием схемы и улучшением параметров источника питания.

Блоки питания ламповых УНЧ, как правило, формируют два вида напряжений. Это постоянные напряжения величиной от нескольких десятков до сотен вольт для питания цепей анодов и экранных сеток, а также постоянные или переменные напряжения от единиц до полутора десятков вольт для цепей накала. Поэтому работа по улучшению параметров блоков питания также ведется в двух направлениях, которые соответствуют указанным видам формируемых напряжений.

Источники питания цепей анода и экранных сеток

Для формирования постоянных напряжений, необходимых для питания анодных цепей и цепей экранных сеток ламп УНЧ, обычно применяются ламповые или полупроводниковые выпрямители. В зависимости от особенностей применяемых схемотехнических решений, выпрямительные элементы могут подключаться по одпополупериодной, двухполупериодной или мостовой схеме. Однако в высококачественных ламповых усилителях формирование питающих напряжений для цепей анодов и экранных сеток обеспечивается чаще всего двухполупериодными или мостовыми выпрямителями, что позволяет при неизменных данных фильтра получить значительно меньший коэффициент пульсаций, чем от однополупериодного выпрямителя. Принципиальные схемы простого лампового и полупроводникового двухполупериодного выпрямителя с искусственно созданной средней точкой приведены на рис. 1.

Принципиальные схемы простого лампового (а) и полупроводникового (б) выпрямителя

Рис.1. Принципиальные схемы простого лампового (а) и полупроводникового (б) выпрямителя

В данных схемах сетевое напряжение подается на первичную обмотку трансформатора Тр1 (выводы 1-2), а аноды двойного диода Л1 или полупроводниковых диодов D1 и D2 подключены к крайним выводам основной вторичной обмотки (выводы 3-5). Параметры трансформатора Тр1 обычно выбираются такими, чтобы значения переменных напряжений между выводами 3-4 и 4-5 находились в пределах 200-500 В. С катода лампы Л1 или с соединенных катодов полупроводниковых диодов D1 и D2 снимается выпрямленное положительное напряжение, а в качестве отрицательной шины используется вывод 4 от середины вторичной обмотки, который является искусственно созданной средней точкой. На конденсаторах C1, С2 и дросселе Др1, который может быть заменен резистором R1, собран фильтр. Необходимо отметить, что при замене дросселя резистором параметры этого резистора (сопротивление и мощность) следует выбирать с учетом тока, потребляемого усилителем, и напряжения, необходимого для питания анодных цепей ламп.

Напряжение накала для двойного диода Л1 выпрямителя (рис. 1, а) обычно формируется отдельной обмоткой трансформатора Тр1 (выводы 6-7), не связанной с обмоткой, с которой снимается напряжение накала Uн для остальных ламп усилителя (выводы 8-9). Дело в том, что на катоде лампы выпрямителя обычно присутствует высокое положительное напряжение, а у многих диодов катод соединен с нитью накала внутри баллона лампы. В схеме выпрямителя на полупроводниковых диодах (рис. 1, б) напряжение накала Uн для ламп усилителя также снимается с отдельной обмотки (выводы 6-7).

Главным достоинством рассмотренной схемы формирования напряжения анодного питания с помощью двойного выпрямительного диода косвенного накала (рис. 1, а) является постепенное возрастание уровня высокого напряжения до номинального значения по мере разогрева лампы. Процесс разогрева лампы выпрямителя по времени практически совпадает с разогревом остальных ламп усилителя, поэтому не возникает перегрузки конденсаторов фильтра при росте анодного напряжения. При использовании полупроводникового выпрямителя (рис. 1, б) постоянное напряжение на конденсаторы фильтра подается практически сразу после включения аппаратуры, что приводит к их перегрузке, поскольку номинальное потребление тока начинается только после разогрева ламп усилителя.

Необходимо отметить, что в двойных диодах с косвенным накалом при перегорании общей нити накала или хотя бы нити накала одного из диодов (в лампах с раздельным накалом) происходит весьма значительное увеличение фона переменного тока с одновременным падением выпрямленного напряжения.

Если в двухполупериодном выпрямителе применяется двойной диод с непосредственным накалом, то напряжение на первый конденсатор сглаживающего фильтра следует снимать со средней точки обмотки накала кенотрона или с искусственно созданной средней точки. Принципиальные схемы выпрямителей на двойном диоде с непосредственным накалом приведены на рис. 2.

Принципиальные схемы выпрямителей на кенотроне с непосредственным накалом со средней точкой обмотки накала (а)  и с искусственно созданной средней точкой (б)

Рис.2. Принципиальные схемы выпрямителей на кенотроне с непосредственным накалом со средней точкой обмотки накала (а) и с искусственно созданной средней точкой (б)

В схеме выпрямителя с искусственно созданной средней точкой (рис. 2, б) резисторы R1 и R2 помимо функции формирования средней точки одновременно обеспечивают снижение импульсов тока при включении блока питания, что способствует увеличению срока службы кенотрона. В обеих схемах напряжение накала Uн для ламп усилителя также снимается с отдельной обмотки (выводы 9-10 на рис. 2, а и выводы 8-9 на рис. 2, б).

На практике в радиолюбительских конструкциях в качестве источника анодного питания ламповых УНЧ обычно используются простые мостовые выпрямители с фильтрами. Принципиальная схема одного из вариантов такого выпрямителя приведена на рис. 3. В данной схеме напряжение питания для цепей анодов и экранных сеток ламп выходных каскадов (Uа1) снимается с точки соединения конденсаторов С1 и С2. В то же время напряжение Uа2, необходимое для питания анодных цепей ламп входных каскадов, дополнительно сглаживается специальным фильтром.

Принципиальная схема простого источника анодного питания с мостовым выпрямителем

Рис.3. Принципиальная схема простого источника анодного питания с мостовым выпрямителем

Источники питания цепей накала

В ламповых усилителях низкой частоты питание цепей накала ламп может осуществляться напряжением как переменного, так и постоянного тока. Формирование этих напряжений обеспечивается соответствующими цепями и каскадами блока питания. Обычно в аппаратуре среднего класса напряжение переменного тока для накала ламп снимается со специальной обмотки силового трансформатора (рис. 4, а). В данной схеме с первой вторичной обмотки трансформатора Тр1 (выводы 3-4) снимается переменное напряжение для источника формирования постоянного анодного напряжения, а со второй вторичной обмотки (выводы 5-6) - переменное напряжение накала требуемой величины, которое подается непосредственно на соответствующие выводы ламп. Большинство электронных ламп, применяемых в усилителях НЧ, рассчитаны на номинальное напряжение накала величиной 6,3 В. Однако иногда для снижения уровня фона первого каскада питание цепи накала лампы предварительного усилителя осуществляется от отдельной обмотки меньшим напряжением. Так, например, для лампы типа 6Н2П это напряжение может составлять 5,7 В, а для лампы 6Н3П - 5,5 В.

Принципиальные схемы обычного источника цепей питания накала (а), с заземленной средней точкой (б) и искусственной средней точкой (в)

Рис.4. Принципиальные схемы обычного источника цепей питания накала (а), с заземленной средней точкой (б) и искусственной средней точкой (в)

Не следует забывать о том, что провода, используемые для подачи переменного напряжения к нитям накала ламп, часто оказываются источником наводок, приводящих к появлению фона переменного тока. Поэтому для ослабления влияния наводок рекомендуется использовать несколько способов. Так, например, самым простым решением является применение так называемых электрически симметричных цепей питания накала, которые образуются путем заземления средней точки обмотки накала относительно шасси или же созданием искусственной средней точки с помощью потенциометра. Упрощенные принципиальные схемы электрически симметричных цепей питания накала приведены на рис. 4, б и 4, в.

В схеме, приведенной на рис. 4, в, потенциометр R1 должен быть рассчитан на мощность не менее 1 Вт и иметь сопротивление в несколько сотен Ом, например от 100 до 680 Ом.

Необходимо отметить, что в некоторых случаях при использовании схемы с искусственной средней точкой (рис. 4, в) для накала ламп входных каскадов движок симметрирующего потенциометра не подключается к корпусу. На него подается небольшой положительный потенциал в несколько десятков вольт, который формируется специальным делителем из постоянного напряжения питания анодных цепей (рис. 5, а). Так, например, для лампы типа 6Н2П это напряжение может составлять 20-30 В. Постоянное напряжение в несколько десятков вольт может подаваться и непосредственно на среднюю точку накальной обмотки силового трансформатора (рис. 5, б). Для лампы типа 6Н2П это напряжение может составлять 50 В.

Принципиальные схемы источников цепей питания накала с подачей постоянного напряжения на искусственную среднюю точку (а) и на среднюю точку обмотки накала (б)

Рис.5. Принципиальные схемы источников цепей питания накала с подачей постоянного напряжения на искусственную среднюю точку (а) и на среднюю точку обмотки накала (б)

В ламповых усилителях аппаратуры высокой верности воспроизведения звука, если для снижения уровня фона рассмотренных мер недостаточно, накал ламп входных каскадов следует питать напряжением постоянного тока, которое формируется отдельным источником. Принципиальные схемы таких источников питания, основу которых составляет двухполупериодный или мостовой выпрямитель, приведены на рис. 6. Необходимо отметить, что схему, изображенную на рис. 6, а, рекомендуется применять для ламп с током накала меньше 300 мА. Для ламп с током накала 0,3 А и выше желательно использовать схему, приведенную на рис. 6, в. При этом обмотка накала должна быть рассчитана на напряжение, вдвое большее, чем номинальное напряжение накала соответствующей лампы. Так, например, для ламп с напряжением накала 6,3 В обмотка накала силового трансформатора должна обеспечивать напряжение 12,6 В.

Принципиальные схемы источников цепей питания накала напряжением постоянного тока

Рис.6. Принципиальные схемы источников цепей питания накала напряжением постоянного тока

Дополнительную защиту от возникновения наводок с одновременным снижением фона, вызванного пульсациями питающего напряжения, обеспечивают стабилизированные источники питания, формирующие напряжения для цепей накала ламп УНЧ. Принципиальная схема одного из вариантов такого источника, выполненного на интегральной микросхеме, приведена на рис. 7.

Принципиальная схема стабилизированного источника питания цепи накала

Рис.7. Принципиальная схема стабилизированного источника питания цепи накала

Комментарии к статье:
  Добавил:  Юра
не понятна схема на кенотроне с искусственной средней точкой рис 2б
  Дата: 2015-03-16 20:42:27
Добавить комментарий:
   
Ваше имя:
Комментарий:
Защита от автозаполнения: